Frizzled3 is required for neurogenesis and target innervation during sympathetic nervous system development.
نویسندگان
چکیده
The sympathetic nervous system has served as an amenable model system to investigate molecular mechanisms underlying developmental processes in the nervous system. While much attention has been focused on neurotrophic factors controlling survival and connectivity of postmitotic sympathetic neurons, relatively little is known about signaling mechanisms regulating development of sympathetic neuroblasts. Here, we report that Frizzled3 (Fz3), a member of the Wnt receptor family, is essential for maintenance of dividing sympathetic neuroblasts. In Fz3(-/-) mice, sympathetic neuroblasts exhibit decreased proliferation and premature cell cycle exit. Fz3(-/-) sympathetic neuroblasts also undergo enhanced apoptosis, which could not be rescued by eliminating the proapoptotic factor, Bax. These deficits result in reduced generation of sympathetic neurons and pronounced decreases in the size of sympathetic chain ganglia. Furthermore, the axons of sympathetic neurons that persist in Fz3(-/-) ganglia are able to extend out of sympathetic ganglia toward distal targets, but fail to fully innervate final peripheral targets. The cell cycle exit, but not target innervation, defects in Fz3(-/-) mice are phenocopied in mice with conditional ablation of β-catenin, a component of canonical Wnt signaling, in sympathetic precursors. Sympathetic ganglia and innervation of target tissues appeared normal in mice lacking a core planar cell polarity (PCP) component, Vangl2. Together, our results suggest distinct roles for Fz3 during sympathetic neuron development; Fz3 acts at early developmental stages to maintain a pool of dividing sympathetic precursors, likely via activation of β-catenin, and Fz3 functions at later stages to promote innervation of final peripheral targets by postmitotic sympathetic neurons.
منابع مشابه
Abnormal sympathetic nervous system development and physiological dysautonomia in Egr3-deficient mice.
Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling a...
متن کاملEgr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death
Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor r...
متن کاملAn autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation.
During nervous system development, axon branching at nerve terminals is an essential step in the formation of functional connections between neurons and target cells. It is known that target tissues exert control of terminal arborization through secretion of trophic factors. However, whether the in-growing axons themselves produce diffusible cues to instruct target innervation remains unclear. ...
متن کاملHeterogeneous requirement of NGF for sympathetic target innervation in vivo.
The neurotrophin nerve growth factor (NGF) plays a crucial role in the development of the sympathetic nervous system. In addition to being required for sympathetic neuron survival in vivo and in vitro, NGF has been shown to mediate axon growth in vitro. The role of NGF in sympathetic axon growth in vivo, however, is not clear because of its requirement for survival. This requirement can be circ...
متن کاملPrenatal and postnatal requirements of NT-3 for sympathetic neuroblast survival and innervation of specific targets.
Postnatal homozygous neurotrophin-3 mutant mice display a loss of about half the sympathetic superior cervical ganglion (SCG) neurons (Ernfors, P., Lee, K.-F., Kucera, J. and Jaenisch, R. (1994a) Cell 77, 503-512; Farinas, I., Jones, K. R., Backus, C., Wang, X. Y. and Reichardt, L. F. (1994) Nature 369, 658-661). We found that this loss is caused by excessive apoptosis of sympathetic neuroblast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 7 شماره
صفحات -
تاریخ انتشار 2011